Semi-slant Pseudo-riemannian Submersions from Indefinite Almost Contact 3-structure Manifolds onto Pseudo-riemannian Manifolds

نویسنده

  • S. S. SHUKLA
چکیده

In this paper, we introduce the notion of a semi-slant pseudoRiemannian submersion from an indefinite almost contact 3-structure manifold onto a pseudo-Riemannian manifold. We investigate the geometry of foliations determined by horizontal and vertical distributions and provide a non-trivial example. We also find a necessary and sufficient condition for a semi-slant submersion to be totally geodesic. Moreover, we check the harmonicity of such submersions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Non existence of totally contact umbilical‎ ‎slant lightlike submanifolds of indefinite Sasakian manifolds

‎We prove that there do not exist totally contact umbilical‎ ‎proper slant lightlike submanifolds of indefinite Sasakian manifolds other than totally contact geodesic‎ ‎proper slant lightlike submanifolds‎. ‎We also prove that there do‎ ‎not exist totally contact umbilical proper slant lightlike‎ ‎submanifolds of indefinite Sasakian space forms‎.

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

On Partially Pseudo Symmetric K-contact Riemannian Manifolds

A Riemannian manifold (M, g) is semi-symmetric if (R(X,Y ) ◦ R)(U, V,W ) = 0. It is called pseudo-symmetric if R ◦ R = F, F being a given function of X, . . . ,W and g. It is called partially pseudosymmetric if this last relation is fulfilled by not all values of X, . . . ,W . Such manifolds were investigated by several mathematicians: I.Z. Szabó, S. Tanno, K. Nomizu, R. Deszcz and others. In t...

متن کامل

Pseudo-riemannian Jacobi–videv Manifolds

We exhibit several families of Jacobi–Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi–Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017