Semi-slant Pseudo-riemannian Submersions from Indefinite Almost Contact 3-structure Manifolds onto Pseudo-riemannian Manifolds
نویسنده
چکیده
In this paper, we introduce the notion of a semi-slant pseudoRiemannian submersion from an indefinite almost contact 3-structure manifold onto a pseudo-Riemannian manifold. We investigate the geometry of foliations determined by horizontal and vertical distributions and provide a non-trivial example. We also find a necessary and sufficient condition for a semi-slant submersion to be totally geodesic. Moreover, we check the harmonicity of such submersions.
منابع مشابه
Commutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملNon existence of totally contact umbilical slant lightlike submanifolds of indefinite Sasakian manifolds
We prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian manifolds other than totally contact geodesic proper slant lightlike submanifolds. We also prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian space forms.
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملOn Partially Pseudo Symmetric K-contact Riemannian Manifolds
A Riemannian manifold (M, g) is semi-symmetric if (R(X,Y ) ◦ R)(U, V,W ) = 0. It is called pseudo-symmetric if R ◦ R = F, F being a given function of X, . . . ,W and g. It is called partially pseudosymmetric if this last relation is fulfilled by not all values of X, . . . ,W . Such manifolds were investigated by several mathematicians: I.Z. Szabó, S. Tanno, K. Nomizu, R. Deszcz and others. In t...
متن کاملPseudo-riemannian Jacobi–videv Manifolds
We exhibit several families of Jacobi–Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi–Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.
متن کامل